acceldata

Acceldata’s ODP Spark
with Gluten Velox

Accelerating Big Data Processing Through
Vectorized Execution

acceldata

Executive Summary

Organizations today demand faster insights from ever-growing volumes of data. While Apache Spark has become the
de facto engine for distributed analytics, its traditional row-based execution model introduces inefficiencies that limit

performance at scale.

Acceldata’s ODP Spark with Gluten Velox represents a breakthrough: by integrating Intel's Gluten plugin and Meta’s Velox
vectorized execution engine, Spark workloads achieve 1-3x faster performance with significantly improved CPU, memory,

and 1/0 efficiency.

In benchmark testing using the TPC-DS suite on a 100GB dataset, executed on a 3-node cluster (64 GB RAM, 12 vCPUs
each), Acceldata ODP Spark with Gluten/Velox consistently delivered:

1-3x query acceleration
across complex aggregations, joins,

and window functions

15-20% lower

memory allocation pressure

Quantified ROl Example
(1000-core Spark cluster)

20-30% reduction

in CPU cycles per row processed

Reduced shuffle and |/O
overhead

via optimized columnar storage and execution

Compute hours/
day

Failed jobs due to
OOM

Time-to-insight

Infrastructure
scaling needs

Acceldata’s ODP Spark with Gluten Velox

24,000

5-10%

4 hours

Year 2

12,000-16,000

2-3%

1.5-2 hours

Year 3-4

$150K-$300K (AWS EC2 rates)

$50K-$100K (engineering time + re-runs)

Intangible (faster decisions)

$500K-$1M (deferred CapEx)

Page 2

acceldata

Gluten-Velox ROI Analysis
1000-core Spark cluster - Annual Comparison

<4 Compute Hours / Day <4 Failed Jobs (OOM)

WITHOUT WITH WITHOUT WITH

24,000 Hours 12,000 - 16,000 Hours 5-10% 2-3%

© $150K - $300K / Year © $50K - $100K / Year
4 Time-to-Insight <4 Infrastructure Scaling

WITHOUT WITH WITHOUT WITH

4 Hours 1.5 -2 Hours Year 2 Year 3-4

o Intangible Value o $500K - $1M Deferred

For enterprises running large-scale analytics, this translates into lower infrastructure costs, faster time-to-insight, and
improved operational efficiency — without changing existing Spark applications.

Spark + Velox Performance Analysis
TPC-DS Benchmark Results - 100GB Dataset Analysis

@ Cluster Configuration

3 Nodes Ubuntu 20.04 750GB

Hadoop Cluster Operating System Storage per Node
12 Cores 64GB 100GB

CPU per Node Memory per Node TPC-DS Dataset

Acceldata’s ODP Spark with Gluten Velox Page 3

acceldata

1. Introduction

1.1 The Performance Challenge in Big 1.2 The Vectorization Solution
Data Analytics

Vectorized execution engines process data in batches

Modern analytical workloads demand processing of (vectors) rather than individual rows, enabling:
petabyte-scale datasets with sub-second response

times. Traditional Spark's row-at-a-time processing SIMD (Single Instruction, Multiple Data)
model, while flexible and robust, introduces significant instruction utilization

computational overhead through: Improved CPU cache locality

» Row-based tuple processing with high function * Reduced function call overhead

» Native code execution performance
call overhead

« JVM garbage collection pressure from object Advanced columnar storage optimizations

creation

« Inefficient CPU cache utilization

 Limited vectorization opportunities in the JVM
runtime

Acceldata’s ODP Spark with Gluten Velox Page 4

acceldata

2. Technical Architecture

2.1 Gluten Framework Overview

Gluten serves as an abstraction layer that enables
Spark to leverage native execution engines while
maintaining APl compatibility. The architecture consists
of:

Plugin Interface Layer

o Seamless integration with Spark's Catalyst
optimizer

¢ Rule-based transformation of Spark plans to native
execution plans

o Fallback mechanisms for unsupported operations

Native Execution Engine Integration

o Primary support for Meta's Velox engine

» Extensible architecture supporting multiple
backends (Clickhouse, Arrow)

« Memory management bridge between JVM and
native heap

Columnar Data Exchange

+ Apache Arrow-based data interchange format
o Zero-copy data transfers where possible
o Optimized serialization/deserialization

Physical Plan

2.2 Velox Execution Engine

Velox, originally developed by Meta for Presto,
provides the native vectorized execution runtime:

Vectorized Operators

o Columnar batch processing (typically 1024-4096
rows per batch)

« Template-based code generation for type-specific
operations

» Adaptive batch sizing based on memory pressure

Memory Management

e Custom memory pools with NUMA awareness
« Efficient buffer reuse and recycling
 Memory pressure-based execution flow control

Expression Evaluation

o Compiled expression evaluation with SIMD
utilization

e Lazy evaluation and short-circuiting optimizations

e Common subexpression elimination

% Columnar Vector

Plan Memory Columnar : . .

Substrait % Substrait E

Substralt Substrait

Substrait-> Velox
Velox ClickHouse

Arrow Compute
(Reference)

FPGA/GPU/ASIC
Accelerators

Acceldata’s ODP Spark with Gluten Velox

Page 5

acceldata

3. Performance Analysis

3.1 TPC-DS Benchmark Results

Comprehensive testing on TPC-DS benchmark queries demonstrates consistent performance improvements:

Query Categories and Performance Gains

Advanced Analytics (Q37 Q40 Q78 Q90 Q93) Join-Intensive Queries (Q7, Q11, Q17, Q29, Q65)

@ Average speedup: 1.46x @ Average speedup: 1.21x

© Peak improvement: 3.72x on Q93 (complex @ Peak improvement: 1.87x on Q29 (multi-table
window functions) joins)

@ Primary benefit: Analytics operations @ Primary benefit: Columnar hash joins with bloom

filter pushdown

Aggregation-Heavy Queries (Q1, Q4, Q5, Q9,Q27, Q84) Window Functions (Q12 Q21 Q51 Q67)

@ Average speedup: 1.23x @ Average speedup: 1.27x

@ Peak improvement: 1.92x on Q5 (complex @ Peak improvement: 2.19x on Q51 (regex operations)
window functions) @ Primary benefit: SIMD string operations and

@ Primary benefit: Vectorized aggregation with dictionary encoding

hash table optimizations

Average Speedup by Query Category

1.4

0.8

Average Speedup (x)

0.6

0.4

0.2

Aggregation- Join-Intensive Window OLAP Advanced Reporting
Heavy Functions Operations Analytics

Acceldata’s ODP Spark with Gluten Velox Page 6

acceldata

3.72X

Best Overall Speedup
q93 (Advanced Analytics)

1.31x

Overall Average Speedup
88 queries improved

P o 2

90s

80s

70s

60

7]

50

7]

40

Execution Time (seconds)
w

30

7]

20

7]

10

7]

Os

Acceldata’s ODP Spark with Gluten Velox

[s5

o

o

Y Peak Achievements with Gluten

1.51x

Best Category Average
OLAP Operations

6

Excellent Performers
Queries with 2x+ Speedup

N

g A a2 P
® & & & & & &

I\
&

N
&£

Query ID (Sorted by Improvement %)

P P LSS

552s

Total Time Saved
Across all 102 queries

86%

Success Rate
Queries showing Improvement

P &

s
& & & & &

@ With Gluten @ Without Gluten

Page 7

acceldata

3.2 Resource Utilization Improvements

CPU Efficiency

@ 20-30% reduction in CPU cycles per processed @ Improved instruction cache hit rates through
row code locality

@ Better branch prediction through vectorized
control flow

Memory Performance

@ 15-20% reduction in memory allocation @ Improved memory bandwidth utilization through
pressure sequential access patterns

@ Reduced GC overhead through native
memory management

I/O Optimization

@ Enhanced predicate pushdown capabilities @ Improved compression ratios with columnar layouts
© Reduced network shuffle through better
data locality

Acceldata’s ODP Spark with Gluten Velox Page 8

acceldata

Performance Characteristics

3.3 Workload-Specific

OLAP Workloads

@ Optimal performance on columnar storage

@ Best suited for analytical queries with large

formats (Parquet, ORC)

data scans

@ Significant gains on aggregation and complex

expression evaluation

Query Runtime Comparison (Velox vs Non-Velox)

Engine

- velox

m— Nonvelox

l lmu‘ul‘mnn‘ ||Ium_umIni..mllll”lulmmiuhl nllwn | iIIlil“IllllilJIl

80

0

=)
=

{s) swnuny Bay

6
2

0
0

Query ID

Page 9

Acceldata’s ODP Spark with Gluten Velox

acceldata

Spark + Velox Performance Dashboard
TPC-DS Benchmark: Parquet cs ORC Format Comparison

Detailed Analysis All Queries

(!
Overall Winner Performance Gain
(o)
Parquet 11.6%
Wins 95.1% of queries Average improvement with Parquet
\. J
e N\ B
Time Saved Queries Tested
201.3s 102
Total time saved across all queries TPC-DS Benchmark queries
& J . J

Parquet Faster: 97 (95.1%)

)

T\

ORC Faster: 5 (4.9%)

Mixed Workloads

 Performance varies based on operation mix ¢ Fallback overhead minimal for unsupported operations
» Adaptive execution planning based on cost estimates

Acceldata’s ODP Spark with Gluten Velox Page 10

acceldata

4. Implementation Considerations

4.1 Deployment Architecture

Cluster Configuration Requirements

« Native library deployment across all executor
nodes

Storage Format Optimization

o Parquet with optimized column layouts
* Row group sizing aligned with vectorized batch

o Shared library compatibility (glibc version >= sizes
2.28, libstdc++ version >=11.2)
e Memory management tuning for dual JVM/native

e Compression codec selection (ZSTD, LZ4) for
decompression performance
heaps

4.2 Configuration Parameters

Key Gluten Settings:

spark.gluten.enabled=true

spark.gluten.ras.costModel=true
spark.shuffle.manager=org.apache.spark.shuffle.columnar.ColumnarShuffleManager
spark.gluten.memory.overAcquiredMemoryRatio=0.3

spark.gluten.sgl.columnar.backend.velox.memCacheSize=4g

spark.gluten.memory.overAcquiredMemoryRatio :

What it does:

e Controls how much extra memory Gluten can o Acts as a buffer for memory spikes during columnar
acquire beyond its initial allocation operations
o Value of 0.3 means Gluten can use up to 30%

more memory than initially allocated

How it works:

If executor memory = 106GB and initial Gluten allocation = 4GB
With overAcquiredMemoryRatio = 0.3:

Maximum Gluten memory = 4GB + (4GB * 0.3) = 5.2GB

When to adjust:

Increase (0.4-0.6) if you see: Decrease (0.1-0.2) if you see:

o Memory allocation failures during complex * Frequent GC pressure

aggregations « Memory contention between Spark and Gluten
« OOM errors in vectorized operations o Other executors getting OOM due to memory
o Performance degradation in large TPC-DS hogging

queries (like Q67, Q95)

Acceldata’s ODP Spark with Gluten Velox Page 11

acceldata

spark.gluten.sql.columnar.backend.velox.memCacheSize:

What it does:
o Sets the size of Velox's internal memory cache » Used for caching frequently accessed columnar
« Acts as a buffer pool for vectorized operations data

Memory hierarchy:

Spark Executor Memory

—— JVM Heap (Spark operations)

—— Off-heap (Tungsten)

L Gluten Memory
—— Velox Memory Cache (4GB in your config)
—— Computation buffers

L Intermediate results

When to adjust:

Increase (6-8GB) if: Decrease (2-3GB) if:
o Working with large Parquet/ORC files o Limited executor memory (<8GB)
« High cache hit ratios in your workload
« Sufficient executor memory available (>16GB)
o Complex multi-stage TPC-DS queries

o Simple queries with low reuse
o Memory pressure from other components

Acceldata’s ODP Spark with Gluten Velox Page 12

acceldata

4.3 Compatibility Matrix

Core SQL operations: Mathematical and string functions:
 SELECT, WHERE filters, PROJECT « Arithmetic (+, -, * /, %)
» Joins: Broadcast Hash Join, Shuffle Hash Join, o Comparisons and logical expressions (=, <,
Sort-Merge Join, Nested Loop Join, Null-Aware >, AND, OR, NOT)
Anti Join » String functions (substring, concat, length,
o Aggregations: GROUP BY, ROLLUP, CUBE, trim, etc.)
HAVING « Conditional expressions (CASE, IF)
« Sorting and ordering (ORDER BY, LIMIT) o Type casting
e UNION
Window functions and analytical operations: Complex data types:
« Ranking (RANK, DENSE_RANK, ROW_NUMBER) Arrays, Maps, Structs
 Aggregates over windows (e.g., moving « Nested fields in projections and filters

averages, cumulative sums)

File formats and execution:

e Parquet: fully supported
e ORC: partial support
o Native columnar shuffle with Velox

Spill-to-disk supported
(spark.gluten.sql.columnar.backend.velox.spillEnabled=true)

Acceldata’s ODP Spark with Gluten Velox Page 13

acceldata

5. Limitations and Fallbacks

UDFs: Unsupported operators / plan nodes:
o User Defined Functions (Scala/Python/Java * ShuffleExchange (some cases), Unnest,
UDFs) require JVM execution. Values, Top-N, EnforceSingleRow,
o Gluten automatically falls back to Spark JVM for PartitionedOutput
these. + These fall back to Spark’s JVM engine.
Advanced SQL features: Streaming
« ANSI mode not fully supported - certain queries o Structured Streaming operations are not yet
will fallback. supported in Gluten+Velox.

« Some JSON/CSV functions and schema evolution
scenarios may not be handled natively.
o Complex nested subqueries sometimes fall back.

Function semantics mismatches: File formats:
» A few math/string functions behave slightly e Parquet: best support
differently than Spark’s JVM version. e ORC: partial support
o Marked as “partial support” in docs; fallback may e CSV/JSON: limited; often fallback

occur if strict compatibility is required.

Acceldata’s ODP Spark with Gluten Velox Page 14

acceldata

6. Operational Deployment

6.1 Migration Strategy

Gluten/Velox is designed as a drop-in acceleration layer that requires no application code changes. The "migration strategy"
is really about operational deployment rather than code migration.

Infrastructure Deployment: Gluten requires native libraries (C++ Velox runtime) distributed across all cluster nodes. In
enterprise environments with security controls, this isn't trivial - you need to handle native library packaging, distribution,
and permissions in Kerberos/SSL environments.

Install prerequisites:

sudo apt-get update

sudo apt-get install build-essential g++ python3-dev -y

wget https://archives.boost.io/release/1.84.0/source/boost_1_84_0.tar.gz
file boost_1_84_0.tar.gz

tar -xvzf boost_1_84_0.tar.gz

cd boost_1_84_0

./bootstrap.sh --with-libraries=context

sudo ./b2 install

echo "/usr/local/lib" | sudo tee /etc/ld.so.conf.d/boost.conf
sudo ldconfig

1s -1 /usr/local/lib/libboost_context*

export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

The boost: :context library is being used here, and other Boost components are not supported in this setup.

Boost is distributed under the Boost Software License (BSL-1.0), which is a permissive, OSl-approved license similar to
MIT

6.2 RollBack

No rollback plan is required since Gluten Velox supports Spark applications without any code changes. If a particular query
is not supported by Velox, it will automatically fall back to Spark’s default JVM-based plan.

6.3 Monitoring and Observability

Key Metrics to Track Logging and Debugging

e Query execution time improvements » Native execution plan logging

» Resource utilization (CPU, memory, 1/0O) e Memory pool utilization tracking

o Fallback operation frequency o Performance regression detection

e Memory allocation patterns

Acceldata’s ODP Spark with Gluten Velox Page 15

acceldata

Spark Ul Metrics

SQL Tab Plan Details: Check the physical execution plan in Spark Ul. Gluten-accelerated operators show up with distinct
names like VeloxColumnarToRowExec, VeloxHashAggregateExec, or VeloxProjectExec instead of standard Spark
operators.

oopJoi Transformer

time of NestedLoopJoin: 0 ms
number of output bytes: 40.0 B
cpu wall time count: 71

number of output vectors: 1
peak memory bytes: 0.0 B
number of output rows: 1

ProjectExecTransformer

time of project: 0 ms

number of output bytes: 72.0 B
cpu wall time count: 28

number of output vectors: 1
peak memory bytes: 256.0 B
number of output rows: 1
number of memory allocations: 4

VeloxColumnarToRow

number of output rows: 1
number of input batches: 1
time to convert: 0 ms

!

AdaptiveSparkPlan

gg| ransformer

number of memory allocations: 918

number of output vectors: 153

number of spilled bytes total (min, med, max)
0.0B(0.0B,0.0B,0.08B)

number of output rows: 153

number of output bytes total (min, med, max)
4.8 KiB (32.0B, 32.0B,32.0B)

time of aggregation total (min, med, max)
165 ms (0 ms, 1 ms, 1ms)

peak memory bytes total (min, med, max)

9.7 MiB (64.6 KiB, 64.6 KiB, 64.6 KiB)

cpu wall time count: 182,862

VeloxResizeBatches

number of output batches: 153

number of input rows: 153

time to append / split batches total (min, med, max)
91ms (0 ms, Tms, 2ms)

number of input batches: 153

number of output rows: 153

ColumnarExchange

shuffle records written: 153

shuffle write time total (min, med, max)
0 ms (0 ms, 0 ms, 0 ms)

time to compress total (min, med, max)
0 ms (0 ms, 0 ms, 0 ms)

time to split total (min, med, max)

58 ms (0 ms, 0 ms, 25 ms)

Acceldata’s ODP Spark with Gluten Velox Page 16

acceldata

Stage Details: Look for native execution indicators in stage metrics. Gluten stages typically show different memory usage
patterns and often significantly reduced CPU time per task.

~ Completed Stages (11)

Page: 1

Stage ld v Description

i

10

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
processLine at CliDriver.java:336 +details

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
genShuffleDependency at VeloxSparkPlanExecApi.scala:542 +details

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
collect at V¢ kPlanExecApi.scala:633 +details

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
genShuffleDependency at VeloxSparkPlanExecApi.scala:542 +details

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
genShuffleDependency at VeloxSparkPlanExecApi.scala:542 +details

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
collect at VeloxSparkPlanExecApi.scala:633 +details

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
collect at VeloxSparkPlanExecApi.scala:633 +details

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
collect at VeloxSparkPlanExecApi.scala:633 +details

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
collect at VeloxSparkPlanExecApi.scala:633 +details

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
collect at VeloxSparkPlanExecApi.scala:633 +details

SELECT promotions, total, cast(promotions AS DECIMAL(15, 4)) / cast(total AS DECIMAL(15, 4)...
collect at VeloxSparkPlanExecApi.scala:633 +details

Submitted

2025/09/12 15:29:05

2025/09/12 15:29:00

2025/09/12 15:28:59

2025/09/12 15:28:46

2025/09/12 15:28:46

2025/09/12 15:28:43

2025/09/12 15:28:43

2025/09/12 15:28:43

2025/09/12 15:28:43

2025/09/12 15:28:43

2025/09/12 15:28:43

1Pages. Jumpto 1 .Show 100 itemsinapage. Go
Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
04s | n 49 KiB
6s 163/1563 29GiB 4.9 KiB
03s 171 49 KiB
6s 153/153 25GiB 4.9 KiB
7S | 153/153 29GiB 4.9 KiB
41ms 2/2 1972.1KiB
01s 2/2 58.3 KiB
85 ms 22 67.5 KiB
01s [e 10901 KiB
01s 6/6 4.4 MiB
2s 1019 15.6 MiB

Task Metrics: Native execution shows different shuffle read/write characteristics, particularly when using
ColumnarShuffleManager with columnar shuffle enabled.

Spbﬁ’(\z Jobs Stages Storage Environment

3.5.5.3.3.6.2-1

Gluten SQL / DataFrame

v Gluten Build Information

Name

Component Velox Branch

Component Velox Revision

Component Velox Revision Time

Components

GCC Version

Gluten Branch

Gluten Build Time

Gluten Repo URL

Gluten Revision

Gluten Revision Time

Gluten Version

Hadoop Version

Java Version

Scala Version

Acceldata’s ODP Spark with Gluten Velox

Executors

Gluten SQL / DataFrame SQL / DataFrame

Value

<unknown>

<unknown>

<unknown>

Velox

<unknown>

branch-1.4

2025-06-06T13:57:24Z
https://github.com/apache/incubator-gluten
50dd117dadb9fe3e9bba5c5002168e1294b2e2bb
2025-06-06 15:51:55 +0800

1.4.0

3.34

<unknown>

21215

Page 17

acceldata

7. Future Roadmap and Development

7.1 Ongoing Enhancements

Expanded Operation Support Performance Optimizations
« Additional SQL function coverage o GPU acceleration integration

o Streaming workload optimization o Advanced compression techniques
e Enhanced UDF integration e Query compilation improvements

7.2 Ecosystem Integration

Storage Format Evolution Cloud Platform Support
« Apache Iceberg optimization : Well supported in o Optimized deployments for AWS EMR,
recent Gluten versions. Vectorized reading of Azure HDInsight
Iceberg tables works with most standard o Containerized deployment patterns
operations like filters, projections, and joins. o Serverless execution environments

Schema evolution and time travel queries are
generally supported.

o Delta Lake integration : Good support for basic
read operations. Vectorized execution works well
with Delta's Parquet data files, though some
Delta-specific features might fall back to JVM
execution.

o Hudi compatibility improvements : Basic read
support exists, particularly for Copy-on-Write
tables. Merge-on-Read tables may have
limitations since they require merging base and
delta files, which can be complex for vectorized
execution.

Acceldata’s ODP Spark with Gluten Velox

Page 18

acceldata

8. Conclusion

Gluten/Velox represents a significant advancement in Spark's execution capabilities, delivering substantial performance
improvements for analytical workloads through vectorized processing and native code execution. Organizations processing
large-scale analytical workloads can expect 1-3x performance improvements with proper implementation and tuning.

The technology is production-ready for OLAP workloads with strong community support and active development. While
some limitations exist around UDF support and streaming operations, the benefits for analytical use cases significantly
outweigh the constraints.

Key success factors for deployment include:

Proper cluster configuration and Workload-appropriate tuning of
native library management memory and execution parameters
Comprehensive testing and Monitoring infrastructure for
validation processes performance tracking

As the project continues to mature, Gluten/Velox is positioned to become the standard
high-performance execution engine for Spark analytical workloads, enabling organizations
to extract maximum value from their big data investments.

Acceldata’s ODP Spark with Gluten Velox Page 19

References

Apache Spark Official Documentation: https://spark.apache.org/docs/

Gluten Project Repository: https://github.com/oap-project/gluten

Velox Library Documentation: https://facebookincubator.github.io/velox/

TPC-DS Benchmark Specification: http://www.tpc.org/tpcds/

Increase Spark Performance with Intel CPUs and Gluten: https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/

Increase-Spark-Performance-with-Intel-CPUs-and-Gluten/post/1637160

Velox: Meta's Unified Execution Engine: https://www.vldb.org/pvidb/vol15/p3372-pedreira.pdf

Explore ODP ~

Free Consultation 2

>
L=

I I www.acceldata.io
q Cce G tq Copyright © Acceldata 2025. All rights reserved.

https://spark.apache.org/docs/
https://github.com/oap-project/gluten
https://facebookincubator.github.io/velox/
http://www.tpc.org/tpcds/
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Increase-Spark-Performance-with-Intel-CPUs-and-Gluten/post/1637160
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Increase-Spark-Performance-with-Intel-CPUs-and-Gluten/post/1637160
https://www.vldb.org/pvldb/vol15/p3372-pedreira.pdf
https://acceldata.io/
https://www.acceldata.io/open-data-platform
https://www.acceldata.io/hadoop-demo?interested_in=ODP%20(Open%20Data%20Platform)

