Acceldata's ODP Spark with Gluten Velox

Accelerating Big Data Processing Through Vectorized Execution

Executive Summary

Organizations today demand faster insights from ever-growing volumes of data. While Apache Spark has become the de facto engine for distributed analytics, its traditional row-based execution model introduces inefficiencies that limit performance at scale.

Acceldata's **ODP Spark with Gluten Velox** represents a breakthrough: by integrating Intel's Gluten plugin and Meta's Velox vectorized execution engine, Spark workloads achieve 1–3x faster performance with significantly improved CPU, memory, and I/O efficiency.

In benchmark testing using the TPC-DS suite on a 100GB dataset, executed on a 3-node cluster (64 GB RAM, 12 vCPUs each), Acceldata ODP Spark with Gluten/Velox consistently delivered:

1-3x query acceleration

across complex aggregations, joins, and window functions

15-20% lower

memory allocation pressure

20-30% reduction

in CPU cycles per row processed

Reduced shuffle and I/O overhead

via optimized columnar storage and execution

Quantified ROI Example

(1000-core Spark cluster)

Metric	Without Gluten	With Gluten	Annual Savings
Compute hours/ day	24,000	12,000–16,000	\$150K-\$300K (AWS EC2 rates)
Failed jobs due to OOM	5–10%	2-3%	\$50K-\$100K (engineering time + re-runs)
Time-to-insight	4 hours	1.5–2 hours	Intangible (faster decisions)
Infrastructure scaling needs	Year 2	Year 3-4	\$500K-\$1M (deferred CapEx)

Acceldata's ODP Spark with Gluten Velox

Gluten-Velox ROI Analysis

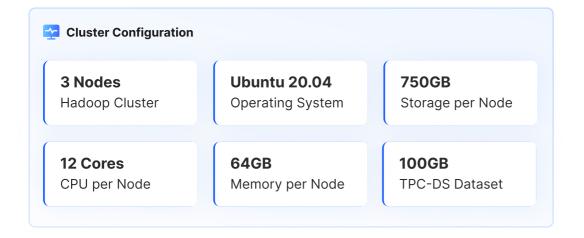
1000-core Spark cluster - Annual Comparison



For enterprises running large-scale analytics, this translates into **lower infrastructure costs**, **faster time-to-insight**, **and improved operational efficiency** — without changing existing Spark applications.

Spark + Velox Performance Analysis

TPC-DS Benchmark Results - 100GB Dataset Analysis



Acceldata's ODP Spark with Gluten Velox
Page 3

1. Introduction

1.1 The Performance Challenge in Big Data Analytics

Modern analytical workloads demand processing of petabyte-scale datasets with sub-second response times. Traditional Spark's row-at-a-time processing model, while flexible and robust, introduces significant computational overhead through:

- Row-based tuple processing with high function call overhead
- JVM garbage collection pressure from object creation
- Inefficient CPU cache utilization
- Limited vectorization opportunities in the JVM runtime

1.2 The Vectorization Solution

Vectorized execution engines process data in batches (vectors) rather than individual rows, enabling:

- SIMD (Single Instruction, Multiple Data) instruction utilization
- · Improved CPU cache locality
- · Reduced function call overhead
- Native code execution performance
- Advanced columnar storage optimizations

2. Technical Architecture

2.1 Gluten Framework Overview

Gluten serves as an abstraction layer that enables Spark to leverage native execution engines while maintaining API compatibility. The architecture consists of:

Plugin Interface Layer

- Seamless integration with Spark's Catalyst optimizer
- Rule-based transformation of Spark plans to native execution plans
- Fallback mechanisms for unsupported operations

Native Execution Engine Integration

- Primary support for Meta's Velox engine
- Extensible architecture supporting multiple backends (Clickhouse, Arrow)
- Memory management bridge between JVM and native heap

Columnar Data Exchange

- · Apache Arrow-based data interchange format
- Zero-copy data transfers where possible
- Optimized serialization/deserialization

2.2 Velox Execution Engine

Velox, originally developed by Meta for Presto, provides the native vectorized execution runtime:

Vectorized Operators

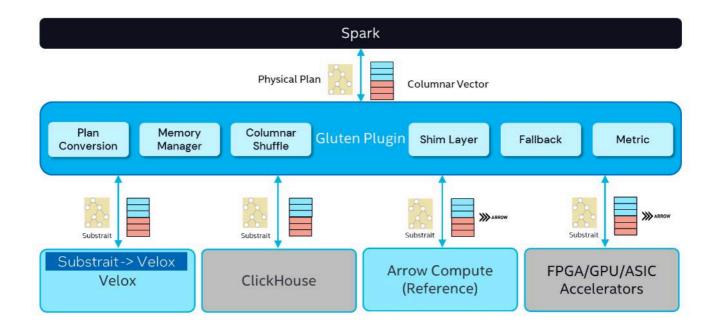
- Columnar batch processing (typically 1024-4096 rows per batch)
- Template-based code generation for type-specific operations
- · Adaptive batch sizing based on memory pressure

Memory Management

- Custom memory pools with NUMA awareness
- · Efficient buffer reuse and recycling
- Memory pressure-based execution flow control

Expression Evaluation

- Compiled expression evaluation with SIMD utilization
- Lazy evaluation and short-circuiting optimizations
- Common subexpression elimination



3. Performance Analysis

3.1 TPC-DS Benchmark Results

Comprehensive testing on TPC-DS benchmark queries demonstrates consistent performance improvements:

Query Categories and Performance Gains

Advanced Analytics (Q37 Q40 Q78 Q90 Q93)

- Average speedup: 1.46x
- Peak improvement: 3.72x on Q93 (complex window functions)
- Primary benefit: Analytics operations

Aggregation-Heavy Queries (Q1, Q4, Q5, Q9, Q27, Q84)

- Average speedup: 1.23x
- Peak improvement: 1.92x on Q5 (complex window functions)
- Primary benefit: Vectorized aggregation with hash table optimizations

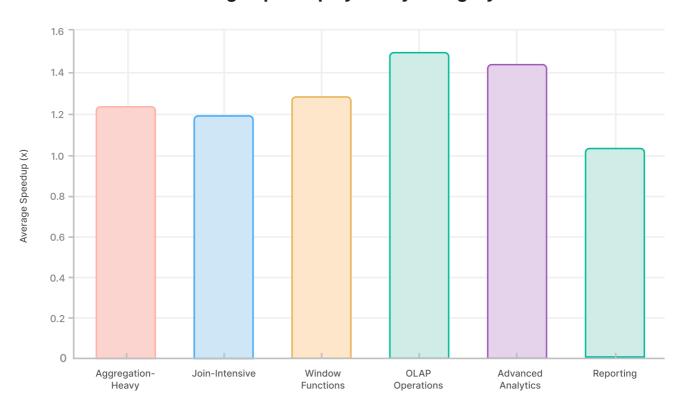
Join-Intensive Queries (Q7, Q11, Q17, Q29, Q65)

- Average speedup: 1.21x
- Peak improvement: 1.87x on Q29 (multi-table joins)
- Primary benefit: Columnar hash joins with bloom filter pushdown

Window Functions (Q12 Q21 Q51 Q67)

- Average speedup: 1.27x
- Peak improvement: 2.19x on Q51 (regex operations)
- Primary benefit: SIMD string operations and dictionary encoding

Average Speedup by Query Category



Acceldata's ODP Spark with Gluten Velox
Page 6

3.72x

Best Overall Speedup

q93 (Advanced Analytics)

1.31x

Overall Average Speedup

88 queries improved

1.51x

Best Category Average

OLAP Operations

6

Excellent Performers

Queries with 2x+ Speedup

552s

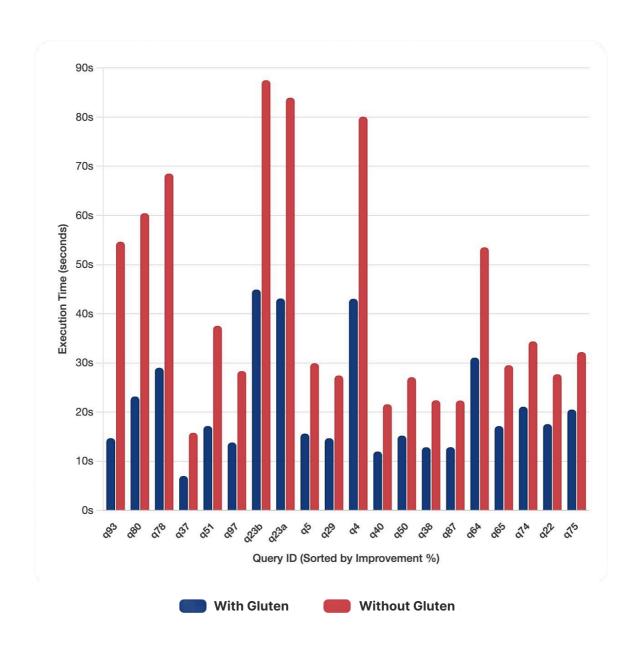
Total Time Saved

Across all 102 queries

86%

Success Rate

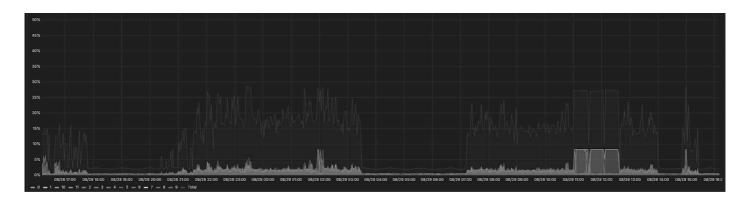
Queries showing Improvement



3.2 Resource Utilization Improvements

CPU Efficiency

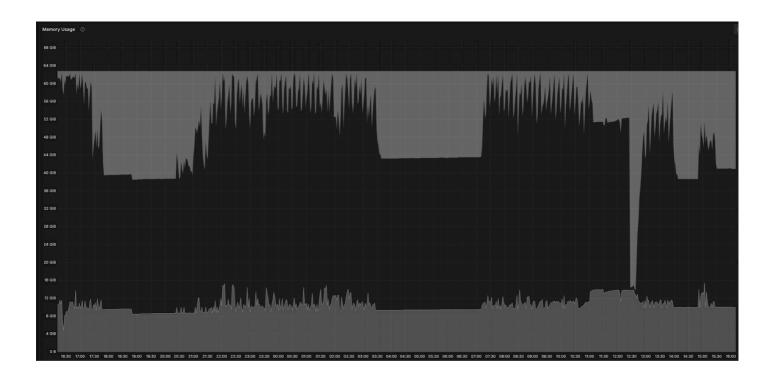
- 20-30% reduction in CPU cycles per processed row
- Better branch prediction through vectorized control flow
- Improved instruction cache hit rates through code locality



Memory Performance

- 15-20% reduction in memory allocation pressure
- Reduced GC overhead through native memory management

 Improved memory bandwidth utilization through sequential access patterns



I/O Optimization

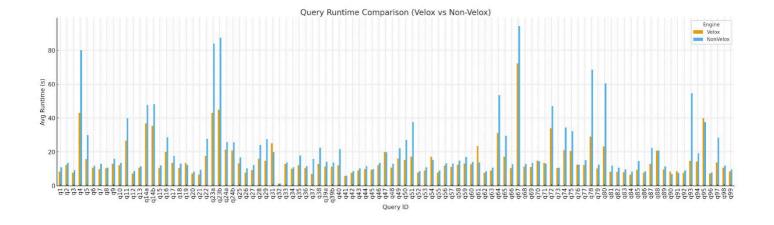
- Enhanced predicate pushdown capabilities
- Reduced network shuffle through better data locality

Improved compression ratios with columnar layouts

3.3 Workload-Specific Performance Characteristics

OLAP Workloads

- Best suited for analytical queries with large data scans
- Significant gains on aggregation and complex expression evaluation
- Optimal performance on columnar storage formats (Parquet, ORC)



Spark + Velox Performance Dashboard

TPC-DS Benchmark: Parquet cs ORC Format Comparison

Overview

Detailed Analysis

All Queries

Overall Winner

Parquet

Wins 95.1% of queries

Performance Gain

11.6%

Average improvement with Parquet

Time Saved

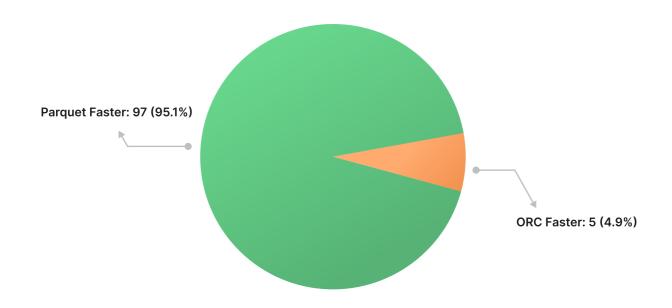
201.3s

Total time saved across all queries

Queries Tested

102

TPC-DS Benchmark queries



Mixed Workloads

- Performance varies based on operation mix
- Adaptive execution planning based on cost estimates
- Fallback overhead minimal for unsupported operations

4. Implementation Considerations

4.1 Deployment Architecture

Cluster Configuration Requirements

- Native library deployment across all executor nodes
- Shared library compatibility (glibc version >= 2.28, libstdc++ version >=11.2)
- Memory management tuning for dual JVM/native heaps

Storage Format Optimization

- Parquet with optimized column layouts
- Row group sizing aligned with vectorized batch sizes
- Compression codec selection (ZSTD, LZ4) for decompression performance

4.2 Configuration Parameters

Key Gluten Settings:

spark.gluten.enabled=true

spark.gluten.ras.costModel=true

spark.shuffle.manager=org.apache.spark.shuffle.columnar.ColumnarShuffleManager

spark.gluten.memory.overAcquiredMemoryRatio=0.3

spark.gluten.sql.columnar.backend.velox.memCacheSize=4g

spark.gluten.memory.overAcquiredMemoryRatio:

What it does:

- Controls how much extra memory Gluten can acquire beyond its initial allocation
- Value of 0.3 means Gluten can use up to 30% more memory than initially allocated

Acts as a buffer for memory spikes during columnar operations

How it works:

```
If executor memory = 10GB and initial Gluten allocation = 4GB With overAcquiredMemoryRatio = 0.3:

Maximum Gluten memory = 4GB + (4GB * 0.3) = 5.2GB
```

When to adjust:

Increase (0.4-0.6) if you see:

- Memory allocation failures during complex aggregations
- OOM errors in vectorized operations
- Performance degradation in large TPC-DS queries (like Q67, Q95)

Decrease (0.1-0.2) if you see:

- Frequent GC pressure
- Memory contention between Spark and Gluten
- Other executors getting OOM due to memory hogging

spark.gluten.sql.columnar.backend.velox.memCacheSize:

What it does:

- Sets the size of Velox's internal memory cache
- Acts as a buffer pool for vectorized operations

Used for caching frequently accessed columnar data

Memory hierarchy:

```
Spark Executor Memory

— JVM Heap (Spark operations)

— Off-heap (Tungsten)

— Gluten Memory

— Velox Memory Cache (4GB in your config)

— Computation buffers

— Intermediate results
```

When to adjust:

Increase (6-8GB) if:

- Working with large Parquet/ORC files
- High cache hit ratios in your workload
- Sufficient executor memory available (>16GB)
- Complex multi-stage TPC-DS queries

Decrease (2-3GB) if:

- Limited executor memory (<8GB)
- Simple queries with low reuse
- Memory pressure from other components

4.3 Compatibility Matrix

Core SQL operations:

- SELECT, WHERE filters, PROJECT
- Joins: Broadcast Hash Join, Shuffle Hash Join, Sort-Merge Join, Nested Loop Join, Null-Aware Anti Join
- Aggregations: GROUP BY, ROLLUP, CUBE, HAVING
- Sorting and ordering (ORDER BY, LIMIT)
- UNION

Window functions and analytical operations:

- Ranking (RANK, DENSE_RANK, ROW_NUMBER)
- Aggregates over windows (e.g., moving averages, cumulative sums)

File formats and execution:

- · Parquet: fully supported
- · ORC: partial support
- Native columnar shuffle with Velox
- Spill-to-disk supported

(spark.gluten.sql.columnar.backend.velox.spillEnabled=true)

Mathematical and string functions:

- Arithmetic (+, -, *, /, %)
- Comparisons and logical expressions (=, <,
 >, AND, OR, NOT)
- String functions (substring, concat, length, trim, etc.)
- Conditional expressions (CASE, IF)
- · Type casting

Complex data types:

- · Arrays, Maps, Structs
- Nested fields in projections and filters

5. Limitations and Fallbacks

UDFs:

- User Defined Functions (Scala/Python/Java UDFs) require JVM execution.
- Gluten automatically falls back to Spark JVM for these.

Advanced SQL features:

- ANSI mode not fully supported → certain queries will fallback.
- Some JSON/CSV functions and schema evolution scenarios may not be handled natively.
- Complex nested subqueries sometimes fall back.

Function semantics mismatches:

- A few math/string functions behave slightly differently than Spark's JVM version.
- Marked as "partial support" in docs; fallback may occur if strict compatibility is required.

Unsupported operators / plan nodes:

- ShuffleExchange (some cases), Unnest,
 Values, Top-N, EnforceSingleRow,
 PartitionedOutput
- · These fall back to Spark's JVM engine.

Streaming

 Structured Streaming operations are not yet supported in Gluten+Velox.

File formats:

- · Parquet: best support
- ORC: partial support
- CSV/JSON: limited; often fallback

6. Operational Deployment

6.1 Migration Strategy

Gluten/Velox is designed as a drop-in acceleration layer that requires no application code changes. The "migration strategy" is really about **operational deployment** rather than code migration.

Infrastructure Deployment: Gluten requires native libraries (C++ Velox runtime) distributed across all cluster nodes. In enterprise environments with security controls, this isn't trivial - you need to handle native library packaging, distribution, and permissions in Kerberos/SSL environments.

Install prerequisites:

```
sudo apt-get update
sudo apt-get install build-essential g++ python3-dev -y
wget https://archives.boost.io/release/1.84.0/source/boost_1_84_0.tar.gz
file boost_1_84_0.tar.gz
tar -xvzf boost_1_84_0.tar.gz
cd boost_1_84_0
./bootstrap.sh --with-libraries=context
sudo ./b2 install
echo "/usr/local/lib" | sudo tee /etc/ld.so.conf.d/boost.conf
sudo ldconfig
ls -1 /usr/local/lib/libboost_context*
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
```

The boost::context library is being used here, and other Boost components are not supported in this setup.

Boost is distributed under the **Boost Software License (BSL-1.0)**, which is a permissive, OSI-approved license similar to MIT

6.2 RollBack

No rollback plan is required since Gluten Velox supports Spark applications without any code changes. If a particular query is not supported by Velox, it will automatically fall back to Spark's default JVM-based plan.

6.3 Monitoring and Observability

Key Metrics to Track

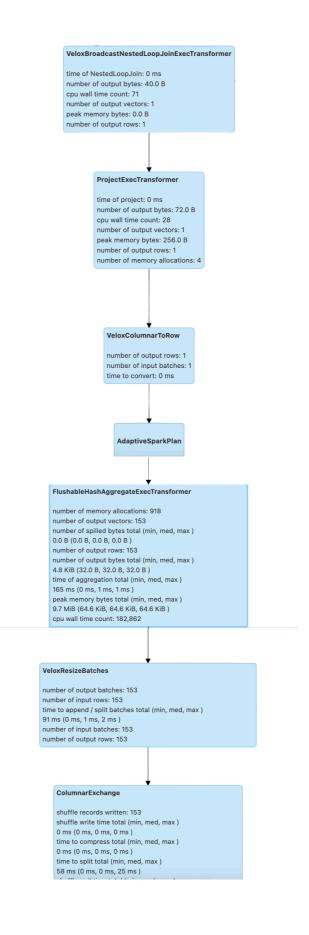
- · Query execution time improvements
- Resource utilization (CPU, memory, I/O)
- · Fallback operation frequency
- · Memory allocation patterns

Logging and Debugging

- · Native execution plan logging
- · Memory pool utilization tracking
- Performance regression detection

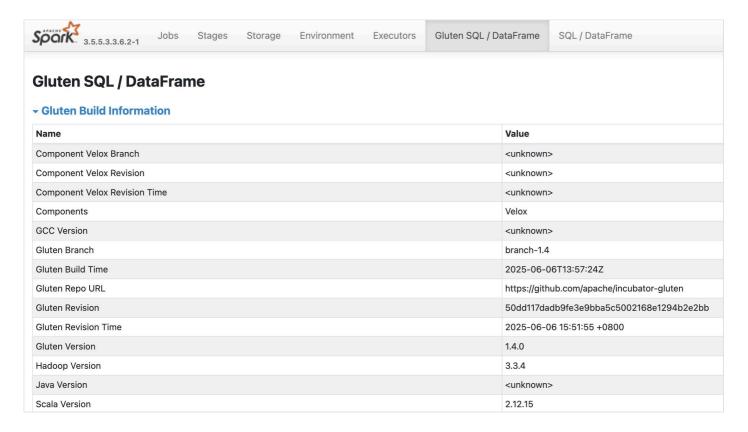
Spark UI Metrics

SQL Tab Plan Details: Check the physical execution plan in Spark UI. Gluten-accelerated operators show up with distinct names like VeloxColumnarToRowExec, **VeloxHashAggregateExec**, or **VeloxProjectExec** instead of standard Spark operators.



Stage Details: Look for native execution indicators in stage metrics. Gluten stages typically show different memory usage patterns and often significantly reduced CPU time per task.

Task Metrics: Native execution shows different shuffle read/write characteristics, particularly when using ColumnarShuffleManager with columnar shuffle enabled.



7. Future Roadmap and Development

7.1 Ongoing Enhancements

Expanded Operation Support

- · Additional SQL function coverage
- Streaming workload optimization
- Enhanced UDF integration

7.2 Ecosystem Integration

Storage Format Evolution

- Apache Iceberg optimization: Well supported in recent Gluten versions. Vectorized reading of Iceberg tables works with most standard operations like filters, projections, and joins.
 Schema evolution and time travel queries are generally supported.
- Delta Lake integration: Good support for basic read operations. Vectorized execution works well with Delta's Parquet data files, though some Delta-specific features might fall back to JVM execution.
- Hudi compatibility improvements: Basic read support exists, particularly for Copy-on-Write tables. Merge-on-Read tables may have limitations since they require merging base and delta files, which can be complex for vectorized execution.

Performance Optimizations

- GPU acceleration integration
- Advanced compression techniques
- · Query compilation improvements

Cloud Platform Support

- Optimized deployments for AWS EMR, Azure HDInsight
- Containerized deployment patterns
- Serverless execution environments

8. Conclusion

Gluten/Velox represents a significant advancement in Spark's execution capabilities, delivering substantial performance improvements for analytical workloads through vectorized processing and native code execution. Organizations processing large-scale analytical workloads can expect 1-3x performance improvements with proper implementation and tuning.

The technology is production-ready for OLAP workloads with strong community support and active development. While some limitations exist around UDF support and streaming operations, the benefits for analytical use cases significantly outweigh the constraints.

Key success factors for deployment include:

Proper cluster configuration and native library management

Workload-appropriate tuning of memory and execution parameters

Comprehensive testing and validation processes

Monitoring infrastructure for performance tracking

As the project continues to mature, Gluten/Velox is positioned to become the standard high-performance execution engine for Spark analytical workloads, enabling organizations to extract maximum value from their big data investments.

Acceldata's ODP Spark with Gluten Velox
Page 19

References

- Apache Spark Official Documentation: https://spark.apache.org/docs/
- Gluten Project Repository: https://github.com/oap-project/gluten
- Velox Library Documentation: https://facebookincubator.github.io/velox/
- TPC-DS Benchmark Specification: http://www.tpc.org/tpcds/
- Increase Spark Performance with Intel CPUs and Gluten: https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/ Increase-Spark-Performance-with-Intel-CPUs-and-Gluten/post/1637160
- Velox: Meta's Unified Execution Engine: https://www.vldb.org/pvldb/vol15/p3372-pedreira.pdf

Explore ODP 7

Free Consultation 7

www.acceldata.io

Copyright © Acceldata 2025. All rights reserved.