
www.acceldata.io

Acceldata’s ODP Spark
with Gluten Velox
Accelerating Big Data Processing Through

Vectorized Execution

Executive Summary
Organizations today demand faster insights from ever-growing volumes of data. While Apache Spark has become the  

de facto engine for distributed analytics, its traditional row-based execution model introduces inefficiencies that limit

performance at scale.

In benchmark testing using the TPC-DS suite on a 100GB dataset, executed on a 3-node cluster (64 GB RAM, 12 vCPUs

each), Acceldata ODP Spark with Gluten/Velox consistently delivered:

Acceldata’s ODP Spark with Gluten Velox Page 2

across complex aggregations, joins,
and window functions

memory allocation pressure

1–3x query acceleration

15–20% lower

in CPU cycles per row processed

20–30% reduction

via optimized columnar storage and execution

Reduced shuffle and I/O
overhead

Quantified ROI Example

(1000-core Spark cluster)

Metric Without Gluten With Gluten Annual Savings

24,000

5–10%

4 hours

Year 2

2–3%

1.5–2 hours

Year 3–4

12,000–16,000 $150K–$300K (AWS EC2 rates)

$50K–$100K (engineering time + re-runs)

Intangible (faster decisions)

$500K–$1M (deferred CapEx)

Compute hours/
day

Failed jobs due to
OOM

Time-to-insight

Infrastructure
scaling needs

Acceldata’s ODP Spark with Gluten Velox represents a breakthrough: by integrating Intel’s Gluten plugin and Meta’s Velox

vectorized execution engine, Spark workloads achieve 1–3x faster performance with significantly improved CPU, memory,

and I/O efficiency.

Gluten-Velox ROI Analysis

Spark + Velox Performance Analysis

1000-core Spark cluster - Annual Comparison

TPC-DS Benchmark Results - 100GB Dataset Analysis

WITHOUT WITH

Compute Hours / Day

$150K - $300K / Year

12,000 - 16,000 Hours24,000 Hours

WITHOUT WITH

Time-to-Insight

Intangible Value

1.5 - 2 Hours4 Hours

WITHOUT WITH

Failed Jobs (OOM)

$50K - $100K / Year

2 - 3%5 - 10%

WITHOUT WITH

Infrastructure Scaling

$500K - $1M Deferred

Year 3-4Year 2

For enterprises running large-scale analytics, this translates into lower infrastructure costs, faster time-to-insight, and

improved operational efficiency — without changing existing Spark applications.

Cluster Configuration

3 Nodes Ubuntu 20.04 750GB
Hadoop Cluster

100GB
TPC-DS Dataset

Operating System Storage per Node

12 Cores
CPU per Node

64GB
Memory per Node

Acceldata’s ODP Spark with Gluten Velox Page 3

1. Introduction

1.1 The Performance Challenge in Big
Data Analytics

1.2 The Vectorization Solution

Modern analytical workloads demand processing of
petabyte-scale datasets with sub-second response
times. Traditional Spark's row-at-a-time processing
model, while flexible and robust, introduces significant
computational overhead through:

Vectorized execution engines process data in batches
(vectors) rather than individual rows, enabling:

Row-based tuple processing with high function

call overhead

JVM garbage collection pressure from object

creation

Inefficient CPU cache utilization

Limited vectorization opportunities in the JVM

runtime

SIMD (Single Instruction, Multiple Data)

instruction utilization

Improved CPU cache locality

Reduced function call overhead

Native code execution performance

Advanced columnar storage optimizations

Acceldata’s ODP Spark with Gluten Velox Page 4

Acceldata’s ODP Spark with Gluten Velox Page 5

2. Technical Architecture
2.1 Gluten Framework Overview

Plugin Interface Layer

Vectorized Operators

Native Execution Engine Integration

Memory Management

Columnar Data Exchange

Expression Evaluation

2.2 Velox Execution Engine
Gluten serves as an abstraction layer that enables
Spark to leverage native execution engines while
maintaining API compatibility. The architecture consists
of:

Seamless integration with Spark's Catalyst

optimizer

Rule-based transformation of Spark plans to native

execution plans

Fallback mechanisms for unsupported operations

Columnar batch processing (typically 1024-4096

rows per batch)

Template-based code generation for type-specific

operations

Adaptive batch sizing based on memory pressure

Primary support for Meta's Velox engine

Extensible architecture supporting multiple

backends (Clickhouse, Arrow)

Memory management bridge between JVM and

native heap

Custom memory pools with NUMA awareness

Efficient buffer reuse and recycling

Memory pressure-based execution flow control

Apache Arrow-based data interchange forma t

Zero-copy data transfers where possible

Optimized serialization/deserialization

Compiled expression evaluation with SI MD

utilization

Lazy evaluation and short-circuiting optimizations

Common subexpression elimination

Velox, originally developed by Meta for Presto,
provides the native vectorized execution runtime:

3. Performance Analysis

3.1 TPC-DS Benchmark Results

Query Categories and Performance Gains

Comprehensive testing on TPC-DS benchmark queries demonstrates consistent performance improvements:

Average speedup: 1.46x

Peak improvement: 3.72x on Q93 (complex

window functions)

Primary benefit: Analytics operations

Average speedup: 1.21x

Peak improvement: 1.87x on Q29 (multi-table

joins)

Primary benefit: Columnar hash joins with bloom

filter pushdown

Average speedup: 1.23x

Peak improvement: 1.92x on Q5 (complex

window functions)

Primary benefit: Vectorized aggregation with

hash table optimizations

Average speedup: 1.27x

Peak improvement: 2.19x on Q51 (regex operations)

Primary benefit: SIMD string operations and

dictionary encoding

Advanced Analytics (Q37 Q40 Q78 Q90 Q93) Join-Intensive Queries (Q7, Q11, Q17, Q29, Q65)

Aggregation-Heavy Queries (Q1, Q4, Q5, Q9,Q27, Q84) Window Functions (Q12 Q21 Q51 Q67)

Acceldata’s ODP Spark with Gluten Velox Page 6

Aggregation-

Heavy

A
ve

ra
g

e
S

p
ee

d
up

 (
x)

Join-Intensive Window
Functions

OLAP
Operations

Advanced
Analytics

Reporting

Average Speedup by Query Category

 Peak Achievements with Gluten

Best Overall Speedup
q93 (Advanced Analytics)

3.72x

Overall Average Speedup
88 queries improved

1.31x

Best Category Average
OLAP Operations

1.51x

Excellent Performers
Queries with 2x+ Speedup

6

Total Time Saved
Across all 102 queries

552s

Success Rate
Queries showing Improvement

86%

Acceldata’s ODP Spark with Gluten Velox Page 7

With Gluten Without Gluten

Memory Performance

15-20% reduction in memory allocation

pressure

Reduced GC overhead through native

memory management

Improved memory bandwidth utilization through

sequential access patterns

Acceldata’s ODP Spark with Gluten Velox Page 8

I/O Optimization

Enhanced predicate pushdown capabilities

Reduced network shuffle through better

data locality

Improved compression ratios with columnar layouts

3.2 Resource Utilization Improvements

CPU Efficiency

20-30% reduction in CPU cycles per processed

row

Better branch prediction through vectorized

control flow

Improved instruction cache hit rates through

code locality

3.3 Workload-Specific Performance Characteristics

OLAP Workloads

Best suited for analytical queries with large

data scans

Significant gains on aggregation and complex

expression evaluation

Optimal performance on columnar storage
formats (Parquet, ORC)

Acceldata’s ODP Spark with Gluten Velox Page 9

Parquet Faster: 97 (95.1%)

ORC Faster: 5 (4.9%)

Mixed Workloads

Performance varies based on operation mix

Adaptive execution planning based on cost estimates

Fallback overhead minimal for unsupported operations

Acceldata’s ODP Spark with Gluten Velox Page 10

Spark + Velox Performance Dashboard
TPC-DS Benchmark: Parquet cs ORC Format Comparison

Overall Winner Performance Gain

Time Saved Queries Tested

Wins 95.1% of queries Average improvement with Parquet

Total time saved across all queries TPC-DS Benchmark queries

Parquet 11.6%

201.3s 102

Overview

4. Implementation Considerations
4.1 Deployment Architecture

Native library deployment across all executor

nodes

Shared library compatibility (glibc version >=

2.28, libstdc++ version >=11.2)

Memory management tuning for dual JVM/native

heaps

Parquet with optimized column layouts

Row group sizing aligned with vectorized batch

sizes

Compression codec selection (ZSTD, LZ4) for

decompression performance

Cluster Configuration Requirements Storage Format Optimization

Acceldata’s ODP Spark with Gluten Velox Page 11

4.2 Configuration Parameters

spark.gluten.enabled=true

spark.gluten.ras.costModel=true

spark.shuffle.manager=org.apache.spark.shuffle.columnar.ColumnarShuffleManager

spark.gluten.memory.overAcquiredMemoryRatio=0.3

spark.gluten.sql.columnar.backend.velox.memCacheSize=4g

spark.gluten.memory.overAcquiredMemoryRatio :

What it does:

How it works:

Key Gluten Settings:

Controls how much extra memory Gluten can

acquire beyond its initial allocation

Value of 0.3 means Gluten can use up to 30%

more memory than initially allocated

Acts as a buffer for memory spikes during columnar

operations

If executor memory = 10GB and initial Gluten allocation = 4GB

With overAcquiredMemoryRatio = 0.3:

Maximum Gluten memory = 4GB + (4GB * 0.3) = 5.2GB

When to adjust:

Memory allocation failures during complex

aggregations

OOM errors in vectorized operations

Performance degradation in large TPC-DS

queries (like Q67, Q95)

F requent GC pressure

Memory contention between Spark and Gluten

Other executors getting OOM due to memory

hogging

Increase (0.4-0.6) if you see: Decrease (0.1-0.2) if you see:

When to adjust:

Working with large Parquet/ORC files

High cache hit ratios in your workload

Sufficient executor memory available (>16GB)

Complex multi-stage TPC-DS queries

spark.gluten.sql.columnar.backend.velox.memCacheSize:

Limited executor memory (<8GB)

Simple queries with low reuse

Memory pressure from other components

Increase (6-8GB) if:

What it does:

Memory hierarchy:

Decrease (2-3GB) if:

Sets the size of Velox's internal memory cache

Acts as a buffer pool for vectorized operations

Used for caching frequently accessed columnar
data

Spark Executor Memory
├

── JVM Heap (Spark operations)
├

── Off-heap (Tungsten)

└── Gluten Memory

 ├ ── Velox Memory Cache (4GB in your config)

 ├ ── Computation buffers

 └── Intermediate results

Acceldata’s ODP Spark with Gluten Velox Page 12

Acceldata’s ODP Spark with Gluten Velox Page 13

4.3 Compatibility Matrix

‎ SELECT, WHERE PROJECT

GROUP BY, ROLLUP, CUBE,

HAVING

ORDER BY, LIMIT

UNION

 filters,

Joins: Broadcast Hash Join, Shuffle Hash Join,

Sort-Merge Join, Nested Loop Join, Null-Aware

Anti Join

Aggregations:

Sorting and ordering ()

Arithmetic (, , , ,)

Comparisons and logical expressions

)

String functions (substring, concat, length,

trim, etc.)

Conditional expressions (,)

Type casting

+ - * / %

(= <

> AND OR NOT

CASE IF

, ,

, , ,

Core SQL operations: Mathematical and string functions:

Ranking ()

Aggregates over windows (e.g., moving

averages, cumulative sums)

RANK, DENSE_RANK, ROW_NUMBER

Parquet: fully supported

ORC: partial support

Native columnar shuffle with Velox

Spill-to-disk supported

()spark.gluten.sql.columnar.backend.velox.spillEnabled=true

Arrays, Maps, Structs

Nested fields in projections and filters

Window functions and analytical operations:

File formats and execution:

Complex data types:

User Defined Functions (Scala/Python/Java

UDFs) require JVM execution.

Gluten automatically falls back to Spark JVM for

these.

ANSI mode not fully supported → certain queries

will fallback.

Some JSON/CSV functions and schema evolution

scenarios may not be handled natively.

Complex nested subqueries sometimes fall back.

A few math/string functions behave slightly

differently than Spark’s JVM version.

Marked as “partial support” in docs; fallback may

occur if strict compatibility is required.

ShuffleExchange Unnest,

Values, Top-N, EnforceSingleRow,

PartitionedOutput

(some cases),

These fall back to Spark’s JVM engine.

Structured Streaming operations are not yet

supported in Gluten+Velox.

Parquet: best support

ORC: partial support

CSV/JSON: limited; often fallback

UDFs:

Advanced SQL features:

Function semantics mismatches:

Unsupported operators / plan nodes:

Streaming

File formats:

Limitations and Fallbacks

Acceldata’s ODP Spark with Gluten Velox Page 14

6. Operational Deployment

6.1 Migration Strategy

6.2 RollBack

6.3 Monitoring and Observability

Gluten/Velox is designed as a drop-in acceleration layer that requires no application code changes. The "migration strategy"
is really about operational deployment rather than code migration.

No rollback plan is required since Gluten Velox supports Spark applications without any code changes. If a particular query
is not supported by Velox, it will automatically fall back to Spark’s default JVM-based plan.

Infrastructure Deployment: Gluten requires native libraries (C++ Velox runtime) distributed across all cluster nodes. In
enterprise environments with security controls, this isn't trivial - you need to handle native library packaging, distribution,
and permissions in Kerberos/SSL environments.

Install prerequisites:

sudo apt-get update

sudo apt-get install build-essential g++ python3-dev -y

wget https://archives.boost.io/release/1.84.0/source/boost_1_84_0.tar.gz

file boost_1_84_0.tar.gz

tar -xvzf boost_1_84_0.tar.gz

cd boost_1_84_0

./bootstrap.sh --with-libraries=context

sudo ./b2 install

echo "/usr/local/lib" | sudo tee /etc/ld.so.conf.d/boost.conf

sudo ldconfig

ls -l /usr/local/lib/libboost_context*

export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

The library is being used here, and other Boost components are not supported in this setup.   

Boost is distributed under the Boost Software License (BSL-1.0), which is a permissive, OSI-approved license similar to
MIT

boost::context

Q uery execution time improvements

Resource utilization (CPU, memory, I/O)

Fallback operation frequency

Memory allocation patterns

Native execution plan loggin g

Memory pool utilization tracking

Performance regression detection

Key Metrics to Track Logging and Debugging

Acceldata’s ODP Spark with Gluten Velox Page 15

Acceldata’s ODP Spark with Gluten Velox Page 16

Spark UI Metrics

SQL Tab Plan Details: Check the physical execution plan in Spark UI. Gluten-accelerated operators show up with distinct
names like VeloxColumnarToRowExec, or instead of standard Spark
operators.

VeloxHashAggregateExec, VeloxProjectExec

Acceldata’s ODP Spark with Gluten Velox Page 17

Task Metrics: Native execution shows different shuffle read/write characteristics, particularly when using
ColumnarShuffleManager with columnar shuffle enabled.

Stage Details: Look for native execution indicators in stage metrics. Gluten stages typically show different memory usage
patterns and often significantly reduced CPU time per task.

7. Future Roadmap and Development

7.1 Ongoing Enhancements

7.2 Ecosystem Integration

Additional SQL function coverage

Streaming workload optimization

Enhanced UDF integration

GPU acceleration integration

Advanced compression techniques

Query compilation improvements

Optimized deployments for AWS EMR,

Azure HDInsight

Containerized deployment patterns

Serverless execution environments

Expanded Operation Support

Storage Format Evolution Cloud Platform Support

Performance Optimizations

Apache Iceberg optimization : Well supported in

recent Gluten versions. Vectorized reading of

Iceberg tables works with most standard

operations like filters, projections, and joins.

Schema evolution and time travel queries are

generally supported. 

Delta Lake integration : Good support for basic

read operations. Vectorized execution works well

with Delta's Parquet data files, though some

Delta-specific features might fall back to JVM

execution. 

Hudi compatibility improvements : Basic read

support exists, particularly for Copy-on-Write

tables. Merge-on-Read tables may have

limitations since they require merging base and

delta files, which can be complex for vectorized

execution.

Acceldata’s ODP Spark with Gluten Velox Page 18

8. Conclusion

Acceldata’s ODP Spark with Gluten Velox Page 19

Gluten/Velox represents a significant advancement in Spark's execution capabilities, delivering substantial performance
improvements for analytical workloads through vectorized processing and native code execution. Organizations processing
large-scale analytical workloads can expect 1-3x performance improvements with proper implementation and tuning.

The technology is production-ready for OLAP workloads with strong community support and active development. While
some limitations exist around UDF support and streaming operations, the benefits for analytical use cases significantly
outweigh the constraints.

Key success factors for deployment include:

Proper cluster configuration and
native library management

Comprehensive testing and
validation processes

Workload-appropriate tuning of
memory and execution parameters

Monitoring infrastructure for
performance tracking

As the project continues to mature, Gluten/Velox is positioned to become the standard
high-performance execution engine for Spark analytical workloads, enabling organizations
to extract maximum value from their big data investments.

References

Apache Spark Official Documentation: https://spark.apache.org/docs/

Gluten Project Repository: https://github.com/oap-project/gluten

Velox Library Documentation: https://facebookincubator.github.io/velox/

TPC-DS Benchmark Specification: http://www.tpc.org/tpcds/

Increase Spark Performance with Intel CPUs and Gluten: https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/

Increase-Spark-Performance-with-Intel-CPUs-and-Gluten/post/1637160

Velox: Meta's Unified Execution Engine: https://www.vldb.org/pvldb/vol15/p3372-pedreira.pdf

ODP

Copyright © Acceldata 2025. All rights reserved.

www.acceldata.io

References

Explore ODP

Free Consultation

https://spark.apache.org/docs/
https://github.com/oap-project/gluten
https://facebookincubator.github.io/velox/
http://www.tpc.org/tpcds/
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Increase-Spark-Performance-with-Intel-CPUs-and-Gluten/post/1637160
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Increase-Spark-Performance-with-Intel-CPUs-and-Gluten/post/1637160
https://www.vldb.org/pvldb/vol15/p3372-pedreira.pdf
https://acceldata.io/
https://www.acceldata.io/open-data-platform
https://www.acceldata.io/hadoop-demo?interested_in=ODP%20(Open%20Data%20Platform)

